This container holds a pipeline's tables. These tables are build from the columns for which importances can be calculated. The motivation behind this container is to determine which tables are more important than others.
Tables can be accessed by name, index or with a NumPy array. The container supports slicing and can be sorted and filtered. Further, the container holds global methods to request tables' importances.
PARAMETER | DESCRIPTION |
targets | The targets associated with the pipeline. TYPE: Sequence[str] |
columns | The columns with which the tables are built. TYPE: Columns |
data | TYPE: Optional[Sequence[Table]] DEFAULT: None |
Note
The container is an iterable. So, in addition to filter
you can also use python list comprehensions for filtering.
Example
all_my_tables = my_pipeline.tables
first_table = my_pipeline.tables[0]
all_but_last_10_tables = my_pipeline.tables[:-10]
important_tables = [table for table in my_pipeline.tables if table.importance > 0.1]
names, importances = my_pipeline.tables.importances()
Source code in getml/pipeline/tables.py
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79 | def __init__(
self,
targets: Sequence[str],
columns: Columns,
data: Optional[Sequence[Table]] = None,
) -> None:
self._targets = targets
self._columns = columns
if data is not None:
self.data = data
else:
self._load_tables()
if not (targets and columns) and not data:
raise ValueError(
"Missing required arguments. Either provide `targets` & "
"`columns` or else provide `data`."
)
|
names property
Holds the names of a Pipeline
's tables.
RETURNS | DESCRIPTION |
List[str] | List containing the names. |
Note
The order corresponds to the current sorting of the container.
targets property
Holds the targets of a Pipeline
's tables.
RETURNS | DESCRIPTION |
List[str] | List containing the names. |
Note
The order corresponds to the current sorting of the container.
filter
Filters the tables container.
PARAMETER | DESCRIPTION |
conditional | A callable that evaluates to a boolean for a given item. TYPE: Callable[[Table], bool] |
RETURNS | DESCRIPTION |
Tables | A container of filtered tables. |
Example
important_tables = my_pipeline.table.filter(lambda table: table.importance > 0.1)
peripheral_tables = my_pipeline.tables.filter(lambda table: table.marker == "[PERIPHERAL]")
Source code in getml/pipeline/tables.py
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218 | def filter(self, conditional: Callable[[Table], bool]) -> Tables:
"""
Filters the tables container.
Args:
conditional:
A callable that evaluates to a boolean for a given item.
Returns:
A container of filtered tables.
??? example
```python
important_tables = my_pipeline.table.filter(lambda table: table.importance > 0.1)
peripheral_tables = my_pipeline.tables.filter(lambda table: table.marker == "[PERIPHERAL]")
```
"""
tables_filtered = [table for table in self.data if conditional(table)]
return self._make_tables(tables_filtered)
|
importances
importances(
target_num: int = 0, sort: bool = True
) -> Tuple[NDArray[str_], NDArray[float_]]
Returns the importances of tables.
Table importances are calculated by summing up the importances of the columns belonging to the tables. Each column is assigned an importance value that measures its contribution to the predictive performance. For each target, the importances add up to 1.
PARAMETER | DESCRIPTION |
target_num | Indicates for which target you want to view the importances. (Pipelines can have more than one target.) TYPE: int DEFAULT: 0 |
sort | Whether you want the results to be sorted. TYPE: bool DEFAULT: True |
RETURNS | DESCRIPTION |
NDArray[str_] | The first array contains the names of the tables. |
NDArray[float_] | The second array contains their importances. By definition, all importances add up to 1. |
Source code in getml/pipeline/tables.py
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261 | def importances(
self, target_num: int = 0, sort: bool = True
) -> Tuple[NDArray[np.str_], NDArray[np.float_]]:
"""
Returns the importances of tables.
Table importances are calculated by summing up the importances of the
columns belonging to the tables. Each column is assigned an importance
value that measures its contribution to the predictive performance. For
each target, the importances add up to 1.
Args:
target_num:
Indicates for which target you want to view the
importances. (Pipelines can have more than one target.)
sort:
Whether you want the results to be sorted.
Returns:
The first array contains the names of the tables.
The second array contains their importances. By definition, all importances add up to 1.
"""
target_name = self._targets[target_num]
names = np.empty(0, dtype=str)
importances = np.empty(0, dtype=float)
for table in self.data:
if table.target == target_name:
names = np.append(names, table.name)
importances = np.append(importances, table.importance)
if not sort:
return names, importances
indices = np.argsort(importances)[::-1]
return (names[indices], importances[indices])
|
sort
Sorts the Tables container. If no arguments are provided the container is sorted by target and name.
PARAMETER | DESCRIPTION |
by | The name of field to sort by. Possible fields: - name(s) - importances(s) TYPE: Optional[str] DEFAULT: None |
key | A callable that evaluates to a sort key for a given item. TYPE: Optional[Callable[[Table], Any]] DEFAULT: None |
descending | Whether to sort in descending order. TYPE: Optional[bool] DEFAULT: None |
RETURNS | DESCRIPTION |
Tables | A container of sorted tables. |
Example
by_importance = my_pipeline.tables.sort(key=lambda table: table.importance)
Source code in getml/pipeline/tables.py
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338 | def sort(
self,
by: Optional[str] = None,
key: Optional[Callable[[Table], Any]] = None,
descending: Optional[bool] = None,
) -> Tables:
"""
Sorts the Tables container. If no arguments are provided the
container is sorted by target and name.
Args:
by:
The name of field to sort by. Possible fields:
- name(s)
- importances(s)
key:
A callable that evaluates to a sort key for a given item.
descending:
Whether to sort in descending order.
Returns:
A container of sorted tables.
??? example
```python
by_importance = my_pipeline.tables.sort(key=lambda table: table.importance)
```
"""
reverse = False if descending is None else descending
if (by is not None) and (key is not None):
raise ValueError("Only one of `by` and `key` can be provided.")
if key is not None:
tables_sorted = sorted(self.data, key=key, reverse=reverse)
return self._make_tables(tables_sorted)
if by is None:
tables_sorted = sorted(
self.data, key=lambda table: table.name, reverse=reverse
)
tables_sorted.sort(key=lambda table: table.target)
return self._make_tables(tables_sorted)
if re.match(pattern="names?$", string=by):
tables_sorted = sorted(
self.data, key=lambda table: table.name, reverse=reverse
)
return self._make_tables(tables_sorted)
if re.match(pattern="importances?$", string=by):
reverse = True if descending is None else descending
tables_sorted = sorted(
self.data, key=lambda table: table.importance, reverse=reverse
)
return self._make_tables(tables_sorted)
raise ValueError(f"Cannot sort by: {by}.")
|
to_pandas
Returns all information related to the tables in a pandas DataFrame.
RETURNS | DESCRIPTION |
DataFrame | A pandas DataFrame containing the tables' names, importances, targets and markers. |
Source code in getml/pipeline/tables.py
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373 | def to_pandas(self) -> pd.DataFrame:
"""
Returns all information related to the tables in a pandas DataFrame.
Returns:
A pandas DataFrame containing the tables' names, importances, targets and markers.
"""
data_frame = pd.DataFrame()
for i, table in enumerate(self.data):
data_frame.loc[i, "name"] = table.name
data_frame.loc[i, "importance"] = table.importance
data_frame.loc[i, "target"] = table.target
data_frame.loc[i, "marker"] = table.marker
return data_frame
|