getml.pipeline.Plots
Plots(name: str)
Custom class for handling the plots generated by the pipeline.
PARAMETER | DESCRIPTION |
---|---|
name | The id of the pipeline the plots are associated with. TYPE: |
Example
recall, precision = my_pipeline.plots.precision_recall_curve()
fpr, tpr = my_pipeline.plots.roc_curve()
Source code in getml/pipeline/plots.py
40 41 42 43 44 |
|
lift_curve
Returns the data for the lift curve, as displayed in the getML Monitor.
This requires that you call score
first. The data used for the curve will always be the data from the last time you called score
.
PARAMETER | DESCRIPTION |
---|---|
target_num | Indicates for which target you want to plot the lift curve. (Pipelines can have more than one target.) TYPE: |
RETURNS | DESCRIPTION |
---|---|
Tuple[ndarray, ndarray] | The first array is the proportion of samples, usually displayed on the x-axis. The second array is the lift, usually displayed on the y-axis. |
Source code in getml/pipeline/plots.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
|
precision_recall_curve
Returns the data for the precision-recall curve, as displayed in the getML Monitor.
This requires that you call score
first. The data used for the curve will always be the data from the last time you called score
.
PARAMETER | DESCRIPTION |
---|---|
target_num | Indicates for which target you want to plot the lift curve. (Pipelines can have more than one target.) TYPE: |
RETURNS | DESCRIPTION |
---|---|
Tuple[ndarray, ndarray] | The first array is the recall (a.k.a. true positive rate), usually displayed on the x-axis. The second array is the precision, usually displayed on the y-axis. |
Source code in getml/pipeline/plots.py
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|
roc_curve
Returns the data for the ROC curve, as displayed in the getML Monitor.
This requires that you call score
first. The data used for the curve will always be the data from the last time you called score
.
PARAMETER | DESCRIPTION |
---|---|
target_num | Indicates for which target you want to plot the lift curve. (Pipelines can have more than one target.) TYPE: |
RETURNS | DESCRIPTION |
---|---|
Tuple[ndarray, ndarray] | The first array is the false positive rate, usually displayed on the x-axis. The second array is the true positive rate, usually displayed on the y-axis. |
Source code in getml/pipeline/plots.py
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
|