getml.pipeline.Pipeline
Pipeline(
data_model: Optional[DataModel] = None,
peripheral: Optional[List[Placeholder]] = None,
preprocessors: Optional[
Union[
CategoryTrimmer,
EmailDomain,
Imputation,
Mapping,
Seasonal,
Substring,
TextFieldSplitter,
List[
Union[
CategoryTrimmer,
EmailDomain,
Imputation,
Mapping,
Seasonal,
Substring,
TextFieldSplitter,
]
],
]
] = None,
feature_learners: Optional[
Union[
Union[
Fastboost,
FastProp,
Multirel,
Relboost,
RelMT,
],
List[
Union[
Fastboost,
FastProp,
Multirel,
Relboost,
RelMT,
]
],
]
] = None,
feature_selectors: Optional[
Union[
Union[
LinearRegression,
LogisticRegression,
XGBoostClassifier,
XGBoostRegressor,
ScaleGBMClassifier,
ScaleGBMRegressor,
],
List[
Union[
LinearRegression,
LogisticRegression,
XGBoostClassifier,
XGBoostRegressor,
ScaleGBMClassifier,
ScaleGBMRegressor,
]
],
]
] = None,
predictors: Optional[
Union[
LinearRegression,
LogisticRegression,
XGBoostClassifier,
XGBoostRegressor,
ScaleGBMClassifier,
ScaleGBMRegressor,
List[
Union[
LinearRegression,
LogisticRegression,
XGBoostClassifier,
XGBoostRegressor,
ScaleGBMClassifier,
ScaleGBMRegressor,
]
],
]
] = None,
loss_function: Optional[str] = None,
tags: Optional[List[str]] = None,
include_categorical: bool = False,
share_selected_features: float = 0.5,
)
A Pipeline is the main class for feature learning and prediction.
PARAMETER | DESCRIPTION |
---|---|
data_model |
Abstract representation of the data_model, which defines the abstract relationships between the tables. Required for the feature learners. |
peripheral |
Abstract representations of the additional tables used to
augment the information provided in
TYPE:
|
preprocessors |
The preprocessor(s) to be used.
Must be from
TYPE:
|
feature_learners |
The feature learner(s) to be used.
Must be from
TYPE:
|
feature_selectors |
Predictor(s) used to select the best features.
Must be from
TYPE:
|
predictors |
Predictor(s) used to generate the predictions.
If more than one predictor is passed, the predictions
generated will be averaged.
Must be from
TYPE:
|
loss_function |
The loss function to use for the feature learners. |
tags |
Tags exist to help you organize your pipelines. You can add any tags that help you remember what you were trying to do. |
include_categorical |
Whether you want to pass categorical columns in the population table to the predictor.
TYPE:
|
share_selected_features |
The share of features you want the feature selection to keep. When set to 0.0, then all features will be kept.
TYPE:
|
Example
We assume that you have already set up your
preprocessors (refer to preprocessors
),
your feature learners (refer to feature_learning
)
as well as your feature selectors and predictors
(refer to predictors
, which can be used
for prediction and feature selection).
You might also want to refer to
DataFrame
, View
,
DataModel
, Container
,
Placeholder
and
StarSchema
.
If you want to create features for a time series problem,
the easiest way to do so is to use the TimeSeries
abstraction.
Note that this example is taken from the robot notebook .
# All rows before row 10500 will be used for training.
split = getml.data.split.time(data_all, "rowid", test=10500)
time_series = getml.data.TimeSeries(
population=data_all,
time_stamps="rowid",
split=split,
lagged_targets=False,
memory=30,
)
pipe = getml.Pipeline(
data_model=time_series.data_model,
feature_learners=[...],
predictors=...
)
pipe.check(time_series.train)
pipe.fit(time_series.train)
pipe.score(time_series.test)
# To generate predictions on new data,
# it is sufficient to use a Container.
# You don't have to recreate the entire
# TimeSeries, because the abstract data model
# is stored in the pipeline.
container = getml.data.Container(
population=population_new,
)
# Add the data as a peripheral table, for the
# self-join.
container.add(population=population_new)
predictions = pipe.predict(container.full)
Example
If your data can be organized in a simple star schema,
you can use StarSchema
.
StarSchema
unifies
Container
and DataModel
:
Note that this example is taken from the loans notebook .
# First, we insert our data into a StarSchema.
# population_train and population_test are either
# DataFrames or Views. The population table
# defines the statistical population of your
# machine learning problem and contains the
# target variables.
star_schema = getml.data.StarSchema(
train=population_train,
test=population_test
)
# meta, order and trans are either
# DataFrames or Views.
# Because this is a star schema,
# all joins take place on the population
# table.
star_schema.join(
trans,
on="account_id",
time_stamps=("date_loan", "date")
)
star_schema.join(
order,
on="account_id",
)
star_schema.join(
meta,
on="account_id",
)
# Now you can insert your data model,
# your preprocessors, feature learners,
# feature selectors and predictors
# into the pipeline.
# Note that the pipeline only knows
# the abstract data model, but hasn't
# seen the actual data yet.
pipe = getml.Pipeline(
data_model=star_schema.data_model,
preprocessors=[mapping],
feature_learners=[fast_prop],
feature_selectors=[feature_selector],
predictors=predictor,
)
# Now, we pass the actual data.
# This passes 'population_train' and the
# peripheral tables (meta, order and trans)
# to the pipeline.
pipe.check(star_schema.train)
pipe.fit(star_schema.train)
pipe.score(star_schema.test)
Example
StarSchema
is simpler,
but cannot be used for more complex data models.
The general approach is to use
Container
and DataModel
:
# First, we insert our data into a Container.
# population_train and population_test are either
# DataFrames or Views.
container = getml.data.Container(
train=population_train,
test=population_test
)
# meta, order and trans are either
# DataFrames or Views. They are given
# aliases, so we can refer to them in the
# DataModel.
container.add(
meta=meta,
order=order,
trans=trans
)
# Freezing makes the container immutable.
# This is not required, but often a good idea.
container.freeze()
# The abstract data model is constructed
# using the DataModel class. A data model
# does not contain any actual data. It just
# defines the abstract relational structure.
dm = getml.data.DataModel(
population_train.to_placeholder("population")
)
dm.add(getml.data.to_placeholder(
meta=meta,
order=order,
trans=trans)
)
dm.population.join(
dm.trans,
on="account_id",
time_stamps=("date_loan", "date")
)
dm.population.join(
dm.order,
on="account_id",
)
dm.population.join(
dm.meta,
on="account_id",
)
# Now you can insert your data model,
# your preprocessors, feature learners,
# feature selectors and predictors
# into the pipeline.
# Note that the pipeline only knows
# the abstract data model, but hasn't
# seen the actual data yet.
pipe = getml.Pipeline(
data_model=dm,
preprocessors=[mapping],
feature_learners=[fast_prop],
feature_selectors=[feature_selector],
predictors=predictor,
)
# This passes 'population_train' and the
# peripheral tables (meta, order and trans)
# to the pipeline.
pipe.check(container.train)
pipe.fit(container.train)
pipe.score(container.test)
Technically, you don't actually have to use a
Container
. You might as well do this
(in fact, a Container
is just
syntactic sugar for this approach):
pipe.check(
population_train,
{"meta": meta, "order": order, "trans": trans},
)
pipe.fit(
population_train,
{"meta": meta, "order": order, "trans": trans},
)
pipe.score(
population_test,
{"meta": meta, "order": order, "trans": trans},
)
__repr__
method of the pipeline,
and it is usually in alphabetical order.
pipe.check(
population_train,
[meta, order, trans],
)
pipe.fit(
population_train,
[meta, order, trans],
)
pipe.score(
population_test,
[meta, order, trans],
)
Source code in getml/pipeline/pipeline.py
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
|
accuracy
property
auc
property
columns
property
columns: Columns
cross_entropy
property
features
property
features: Features
fitted
property
fitted: bool
Whether the pipeline has already been fitted.
RETURNS | DESCRIPTION |
---|---|
bool
|
Whether the pipeline has already been fitted. |
mae
property
plots
property
plots: Plots
id
property
id: str
ID of the pipeline. This is used to uniquely identify the pipeline on the Engine.
RETURNS | DESCRIPTION |
---|---|
str
|
The ID of the pipeline. |
is_classification
property
is_classification: bool
Whether the pipeline can be used for classification problems.
RETURNS | DESCRIPTION |
---|---|
bool
|
Whether the pipeline can be used for classification problems. |
is_regression
property
is_regression: bool
Whether the pipeline can be used for regression problems.
RETURNS | DESCRIPTION |
---|---|
bool
|
Whether the pipeline can be used for regression problems. |
metadata
property
metadata: Optional[AllMetadata]
Contains information on the data frames that were passed to .fit(...). The roles contained therein can be directly passed to existing data frames to correctly reassign the roles of existing columns. If the pipeline has not been fitted, this is None.
RETURNS | DESCRIPTION |
---|---|
Optional[AllMetadata]
|
The metadata of the pipeline. |
name
property
name: str
Returns the ID of the pipeline. The name property is kept for backward compatibility.
RETURNS | DESCRIPTION |
---|---|
str
|
The ID of the pipeline. |
rmse
property
rsquared
property
scores
property
scores: Scores
scored
property
scored: bool
Whether the pipeline has been scored.
RETURNS | DESCRIPTION |
---|---|
bool
|
Whether the pipeline has been scored. |
tables
property
tables: Tables
targets
property
check
check(
population_table: Union[DataFrame, View, Subset],
peripheral_tables: Optional[
Union[
Dict[str, Union[DataFrame, View]],
Sequence[Union[DataFrame, View]],
]
] = None,
) -> Optional[Issues]
Checks the validity of the data model.
PARAMETER | DESCRIPTION |
---|---|
population_table |
Main table containing the target variable(s) and
corresponding to the |
peripheral_tables |
Additional tables corresponding to the If you pass a
TYPE:
|
Source code in getml/pipeline/pipeline.py
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 |
|
delete
delete() -> None
Deletes the pipeline from the Engine.
Warning
You can not undo this action!
Source code in getml/pipeline/pipeline.py
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 |
|
deploy
deploy(deploy: bool) -> None
Allows a fitted pipeline to be addressable via an HTTP request. See deployment for details.
PARAMETER | DESCRIPTION |
---|---|
deploy |
If
TYPE:
|
Source code in getml/pipeline/pipeline.py
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 |
|
fit
fit(
population_table: Union[DataFrame, View, Subset],
peripheral_tables: Optional[
Union[
Sequence[Union[DataFrame, View]],
Dict[str, Union[DataFrame, View]],
]
] = None,
validation_table: Optional[
Union[DataFrame, View, Subset]
] = None,
check: bool = True,
) -> Pipeline
Trains the feature learning algorithms, feature selectors and predictors.
PARAMETER | DESCRIPTION |
---|---|
population_table |
Main table containing the target variable(s) and
corresponding to the |
peripheral_tables |
Additional tables corresponding to the If you pass a
TYPE:
|
validation_table |
Main table containing the target variable(s) and
corresponding to the Only used for early stopping in
TYPE:
|
check |
Whether you want to check the data model before fitting. The checks are
equivalent to the checks run by
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Pipeline
|
The fitted pipeline. |
Source code in getml/pipeline/pipeline.py
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 |
|
predict
predict(
population_table: Union[DataFrame, View, Subset],
peripheral_tables: Optional[
Union[
Sequence[Union[DataFrame, View]],
Dict[str, Union[DataFrame, View]],
]
] = None,
table_name: str = "",
) -> Union[NDArray[float_], None]
Forecasts on new, unseen data using the trained predictor
.
Returns the predictions generated by the pipeline based on
population_table
and peripheral_tables
or writes them into
a database named table_name
.
PARAMETER | DESCRIPTION |
---|---|
population_table |
Main table containing the target variable(s) and
corresponding to the |
peripheral_tables |
Additional tables corresponding to the If you pass a
TYPE:
|
table_name |
If not an empty string, the resulting predictions will
be written into a table in a
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[NDArray[float_], None]
|
Resulting predictions provided in an array of the (number of rows in |
Note
Only fitted pipelines
(fit
) can be used for
prediction.
Source code in getml/pipeline/pipeline.py
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 |
|
refresh
refresh() -> Pipeline
Reloads the pipeline from the Engine.
This discards all local changes you have made since the
last time you called fit
.
RETURNS | DESCRIPTION |
---|---|
Pipeline
|
Current instance |
Source code in getml/pipeline/pipeline.py
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 |
|
score
score(
population_table: Union[DataFrame, View, Subset],
peripheral_tables: Optional[
Union[
Sequence[Union[DataFrame, View]],
Dict[str, Union[DataFrame, View]],
]
] = None,
) -> Scores
Calculates the performance of the predictor
.
Returns different scores calculated on population_table
and
peripheral_tables
.
PARAMETER | DESCRIPTION |
---|---|
population_table |
Main table containing the target variable(s) and
corresponding to the |
peripheral_tables |
Additional tables corresponding to the If you pass a
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Scores
|
The scores of the pipeline. |
Note
Only fitted pipelines
(fit
) can be
scored.
Source code in getml/pipeline/pipeline.py
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 |
|
transform
transform(
population_table: Union[DataFrame, View, Subset],
peripheral_tables: Optional[
Union[
Sequence[Union[DataFrame, View]],
Dict[str, Union[DataFrame, View]],
]
] = None,
df_name: str = "",
table_name: str = "",
) -> Union[DataFrame, NDArray[float_], None]
Translates new data into the trained features.
Transforms the data passed in population_table
and
peripheral_tables
into features, which can be inserted into
machine learning models.
PARAMETER | DESCRIPTION |
---|---|
population_table |
Main table containing the target variable(s) and
corresponding to the |
peripheral_tables |
Additional tables corresponding to the If you pass a
TYPE:
|
df_name |
If not an empty string, the resulting features will be written into a newly created DataFrame.
TYPE:
|
table_name |
If not an empty string, the resulting features will
be written into a table in a
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[DataFrame, NDArray[float_], None]
|
The features generated by the pipeline. |
Example
By default, transform
returns a ndarray
:
my_features_array = pipe.transform()
DataFrame
by providing the df_name
argument:
my_features_df = pipe.transform(df_name="my_features")
getml.database.connect_odbc(...)
pipe.transform(table_name="MY_FEATURES")
Note
Only fitted pipelines
(fit
) can transform
data into features.
Source code in getml/pipeline/pipeline.py
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 |
|