getml.pipeline.Columns
Columns(
pipeline: str,
targets: Sequence[str],
peripheral: Sequence[Placeholder],
data: Optional[Sequence[Column]] = None,
)
Container which holds a pipeline's columns. These include the columns for
which importance can be calculated, such as the ones with
roles
as categorical
,
numerical
and text
.
The rest of the columns with roles time_stamp
,
join_key
, target
,
unused_float
and
unused_string
can not have importance of course.
Columns can be accessed by name, index or with a NumPy array. The container supports slicing and is sort- and filterable. Further, the container holds global methods to request columns' importances and apply a column selection to data frames provided to the pipeline.
PARAMETER | DESCRIPTION |
---|---|
pipeline |
The id of the pipeline.
TYPE:
|
targets |
The names of the targets used for this pipeline. |
peripheral |
The abstract representation of peripheral tables used for this pipeline.
TYPE:
|
data |
The columns to be stored in the container. If not provided, they are obtained from the Engine. |
Note
The container is an iterable. So, in addition to
filter
you can also use python list
comprehensions for filtering.
Example
all_my_columns = my_pipeline.columns
first_column = my_pipeline.columns[0]
all_but_last_10_columns = my_pipeline.columns[:-10]
important_columns = [column for column in my_pipeline.columns if
column.importance > 0.1]
names, importances = my_pipeline.columns.importances()
# Drops all categorical and numerical columns that are not # in the
top 20%. new_container = my_pipeline.columns.select(
container, share_selected_columns=0.2,
)
Source code in getml/pipeline/columns.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|
names
property
filter
Filters the columns container.
PARAMETER | DESCRIPTION |
---|---|
conditional |
A callable that evaluates to a boolean for a given item. |
RETURNS | DESCRIPTION |
---|---|
Columns
|
A container of filtered Columns. |
Example
important_columns = my_pipeline.columns.filter(lambda column: column.importance > 0.1)
peripheral_columns = my_pipeline.columns.filter(lambda column: column.marker == "[PERIPHERAL]")
Source code in getml/pipeline/columns.py
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
|
importances
Returns the data for the column importances.
Column importances extend the idea of column importances to the columns originally inserted into the pipeline. Each column is assigned an importance value that measures its contribution to the predictive performance. All columns importances add up to 1.
The importances can be calculated for columns with
roles
such as categorical
,
numerical
and text
.
The rest of the columns with roles time_stamp
,
join_key
, target
,
unused_float
and
unused_string
can not have importance of course.
PARAMETER | DESCRIPTION |
---|---|
target_num |
Indicates for which target you want to view the importances. (Pipelines can have more than one target.)
TYPE:
|
sort |
Whether you want the results to be sorted.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
NDArray[str_]
|
The first array contains the names of the columns. |
NDArray[float_]
|
The second array contains their importances. By definition, all importances add up to 1. |
Source code in getml/pipeline/columns.py
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
|
select
select(
container: Union[Container, StarSchema, TimeSeries],
share_selected_columns: float = 0.5,
) -> Container
Returns a new data container with all insufficiently important columns dropped.
PARAMETER | DESCRIPTION |
---|---|
container |
The container containing the data you want to use.
TYPE:
|
share_selected_columns |
The share of columns to keep. Must be between 0.0 and 1.0.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Container
|
A new container with the columns dropped. |
Source code in getml/pipeline/columns.py
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
|
sort
sort(
by: Optional[str] = None,
key: Optional[Callable[[Column], Any]] = None,
descending: Optional[bool] = None,
) -> Columns
Sorts the Columns container. If no arguments are provided the container is sorted by target and name.
PARAMETER | DESCRIPTION |
---|---|
by |
The name of field to sort by. Possible fields: - name(s) - table(s) - importances(s) |
key |
A callable that evaluates to a sort key for a given item. |
descending |
Whether to sort in descending order. |
RETURNS | DESCRIPTION |
---|---|
Columns
|
A container of sorted columns. |
Example
by_importance = my_pipeline.columns.sort(key=lambda column: column.importance)
Source code in getml/pipeline/columns.py
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
|
to_pandas
to_pandas() -> DataFrame
Returns all information related to the columns in a pandas data frame.
Source code in getml/pipeline/columns.py
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
|