getml.data.columns
Handlers for 1-d arrays storing the data of an individual variable.
Like the DataFrame
, the
columns
do not contain any actual data themselves
but are only handlers to objects within the getML Engine. These
containers store data of a single variable in a one-dimensional array
of a uniform type.
Columns are immutable and lazily evaluated.
-
Immutable means that there are no in-place operation on the columns. Any change to the column will return a new, changed column.
-
Lazy evaluation means that operations won't be executed until results are required. This is reflected in the column views: Column views do not exist until they are required.
Example
This is what some column operations might look like:
import numpy as np
import getml.data as data
import getml.engine as engine
import getml.data.roles as roles
# ----------------
engine.set_project("examples")
# ----------------
# Create a data frame from a JSON string
json_str = """{
"names": ["patrick", "alex", "phil", "ulrike"],
"column_01": [2.4, 3.0, 1.2, 1.4],
"join_key": ["0", "1", "2", "3"],
"time_stamp": ["2019-01-01", "2019-01-02", "2019-01-03", "2019-01-04"]
}"""
my_df = data.DataFrame(
"MY DF",
roles={
"unused_string": ["names", "join_key", "time_stamp"],
"unused_float": ["column_01"]}
).read_json(
json_str
)
# ----------------
col1 = my_df["column_01"]
# ----------------
# col2 is a column view.
# The operation is not executed yet.
col2 = 2.0 - col1
# This is when '2.0 - col1' is actually
# executed.
my_df["column_02"] = col2
my_df.set_role("column_02", roles.numerical)
# If you want to update column_01,
# you can't do that in-place.
# You need to replace it with a new column
col1 = col1 + col2
my_df["column_01"] = col1
my_df.set_role("column_01", roles.numerical)
BooleanColumnView
BooleanColumnView(
operator: str,
operand1: Optional[OperandType],
operand2: Optional[OperandType],
)
Bases: _View
Handle for a lazily evaluated boolean column view.
Column views do not actually exist - they will be lazily evaluated when necessary.
They can be used to take subselection of the data frame or to update other columns.
Example
import numpy as np
import getml.data as data
import getml.engine as engine
import getml.data.roles as roles
# ----------------
engine.set_project("examples")
# ----------------
# Create a data frame from a JSON string
json_str = """{
"names": ["patrick", "alex", "phil", "ulrike"],
"column_01": [2.4, 3.0, 1.2, 1.4],
"join_key": ["0", "1", "2", "3"],
"time_stamp": ["2019-01-01", "2019-01-02", "2019-01-03", "2019-01-04"]
}"""
my_df = data.DataFrame(
"MY DF",
roles={
"unused_string": ["names", "join_key", "time_stamp"],
"unused_float": ["column_01"]}
).read_json(
json_str
)
# ----------------
names = my_df["names"]
# This is a virtual boolean column.
a_or_p_in_names = names.contains("p") | names.contains("a")
# Creates a view containing
# only those entries, where "names" contains a or p.
my_view = my_df[a_or_p_in_names]
# ----------------
# Returns a new column, where all names
# containing "rick" are replaced by "Patrick".
# Again, columns are immutable - this returns an updated
# version, but leaves the original column unchanged.
new_names = names.update(names.contains("rick"), "Patrick")
my_df["new_names"] = new_names
# ----------------
# Boolean columns can also be used to
# create binary target variables.
target = (names == "phil")
my_df["target"] = target
my_df.set_role(target, roles.target)
# By the way, instead of using the
# __setitem__ operator and .set_role(...)
# you can just use .add(...).
my_df.add(target, "target", roles.target)
Source code in getml/data/columns/columns.py
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
|
is_false
is_false()
Whether an entry is False - effectively inverts the Boolean column.
Source code in getml/data/columns/columns.py
388 389 390 391 392 393 394 |
|
as_num
as_num()
Transforms the boolean column into a numerical column
Source code in getml/data/columns/columns.py
398 399 400 401 402 403 404 |
|
FloatColumn
Bases: _Column
Handle for numerical data in the Engine.
This is a handler for all numerical data in the getML Engine, including time stamps.
ATTRIBUTE | DESCRIPTION |
---|---|
name |
Name of the categorical column.
|
role |
Role that the column plays.
|
df_name |
|
Example
import numpy as np
import getml.data as data
import getml.engine as engine
import getml.data.roles as roles
# ----------------
engine.set_project("examples")
# ----------------
# Create a data frame from a JSON string
json_str = """{
"names": ["patrick", "alex", "phil", "ulrike"],
"column_01": [2.4, 3.0, 1.2, 1.4],
"join_key": ["0", "1", "2", "3"],
"time_stamp": ["2019-01-01", "2019-01-02", "2019-01-03", "2019-01-04"]
}"""
my_df = data.DataFrame(
"MY DF",
roles={
"unused_string": ["names", "join_key", "time_stamp"],
"unused_float": ["column_01"]}
).read_json(
json_str
)
# ----------------
col1 = my_df["column_01"]
# ----------------
col2 = 2.0 - col1
my_df.add(col2, "name", roles.numerical)
# ----------------
# If you do not explicitly set a role,
# the assigned role will either be
# roles.unused_float.
col3 = (col1 + 2.0*col2) / 3.0
my_df["column_03"] = col3
my_df.set_role("column_03", roles.numerical)
Source code in getml/data/columns/columns.py
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
|
FloatColumnView
FloatColumnView(
operator: str,
operand1: Optional[FloatOperandType],
operand2: Optional[FloatOperandType],
)
Bases: _View
Lazily evaluated view on a FloatColumn
.
Column views do not actually exist - they will be lazily evaluated when necessary.
Source code in getml/data/columns/columns.py
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 |
|
StringColumn
Bases: _Column
Handle for categorical data that is kept in the getML Engine
ATTRIBUTE | DESCRIPTION |
---|---|
name |
Name of the categorical column.
|
role |
Role that the column plays.
|
df_name |
|
Example
import numpy as np
import getml.data as data
import getml.engine as engine
import getml.data.roles as roles
# ----------------
engine.set_project("examples")
# ----------------
# Create a data frame from a JSON string
json_str = """{
"names": ["patrick", "alex", "phil", "ulrike"],
"column_01": [2.4, 3.0, 1.2, 1.4],
"join_key": ["0", "1", "2", "3"],
"time_stamp": ["2019-01-01", "2019-01-02", "2019-01-03", "2019-01-04"]
}"""
my_df = data.DataFrame(
"MY DF",
roles={
"unused_string": ["names", "join_key", "time_stamp"],
"unused_float": ["column_01"]}
).read_json(
json_str
)
# ----------------
col1 = my_df["names"]
# ----------------
col2 = col1.substr(4, 3)
my_df.add(col2, "short_names", roles.categorical)
# ----------------
# If you do not explicitly set a role,
# the assigned role will either be
# roles.unused_string.
col3 = "user-" + col1 + "-" + col2
my_df["new_names"] = col3
my_df.set_role("new_names", roles.categorical)
Source code in getml/data/columns/columns.py
479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
|
StringColumnView
StringColumnView(
operator: str,
operand1: Optional[Union[str, _Column, _View]],
operand2: Optional[Union[str, _Column, _View]],
)
Bases: _View
Lazily evaluated view on a StringColumn
.
Columns views do not actually exist - they will be lazily evaluated when necessary.
Example
import numpy as np
import getml.data as data
import getml.engine as engine
import getml.data.roles as roles
# ----------------
engine.set_project("examples")
# ----------------
# Create a data frame from a JSON string
json_str = """{
"names": ["patrick", "alex", "phil", "ulrike"],
"column_01": [2.4, 3.0, 1.2, 1.4],
"join_key": ["0", "1", "2", "3"],
"time_stamp": ["2019-01-01", "2019-01-02", "2019-01-03", "2019-01-04"]
}"""
my_df = data.DataFrame(
"MY DF",
roles={
"unused_string": ["names", "join_key", "time_stamp"],
"unused_float": ["column_01"]}
).read_json(
json_str
)
# ----------------
col1 = my_df["names"]
# ----------------
# col2 is a virtual column.
# The substring operation is not
# executed yet.
col2 = col1.substr(4, 3)
# This is where the Engine executes
# the substring operation.
my_df.add(col2, "short_names", roles.categorical)
# ----------------
# If you do not explicitly set a role,
# the assigned role will either be
# roles.unused_string.
# col3 is a virtual column.
# The operation is not
# executed yet.
col3 = "user-" + col1 + "-" + col2
# This is where the operation is
# is executed.
my_df["new_names"] = col3
my_df.set_role("new_names", roles.categorical)
Source code in getml/data/columns/columns.py
568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
|
arange
arange(
start: Union[Real, float] = 0.0,
stop: Optional[Union[Real, float]] = None,
step: Union[Real, float] = 1.0,
)
Returns evenly spaced variables, within a given interval.
PARAMETER | DESCRIPTION |
---|---|
start |
The beginning of the interval. Defaults to 0. |
stop |
The end of the interval. |
step |
The step taken. Defaults to 1. |
Source code in getml/data/columns/columns.py
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
rowid
rowid() -> FloatColumnView
Get the row numbers of the table.
RETURNS | DESCRIPTION |
---|---|
FloatColumnView
|
(numerical) column containing the row id, starting with 0 |
Source code in getml/data/columns/columns.py
162 163 164 165 166 167 168 169 |
|
collect_footer_data
Collects the data necessary for displaying the column footer.
Footer
aggregation
Lazily evaluated aggregation over a column.
Aggregation
Aggregation(alias, col, agg_type)
Lazily evaluated aggregation over a column.
Example
my_data_frame["my_column"].avg()
3.0
Source code in getml/data/columns/aggregation.py
29 30 31 32 33 |
|
get
get()
Receives the value of the aggregation over the column.
Source code in getml/data/columns/aggregation.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
|
format
Format the column
last_change
Returns the last time a data frame has been changed.
last_change_from_col
The last time any of the underlying data frames has been changed.
length
Returns the length of the column
length_property
The length of the column (number of rows in the data frame).
make_iter
Factory function for a function that can be used to iterate through a column.
parse
Parses the columns from a cmd
repr
ASCII representation of the column.
repr_html
HTML representation of the column.
subroles
The subroles of this column.
to_arrow
Transform column to a pyarrow.ChunkedArray
to_numpy
Transform column to a numpy array.
unique
Transform column to numpy array containing unique values
unit
The unit of this column.
from_value
Creates an infinite column that contains the same value in all of its elements.
PARAMETER | DESCRIPTION |
---|---|
val |
The value you want to insert into your column. |
RETURNS | DESCRIPTION |
---|---|
ReturnType
|
The column view containing the value. |
Source code in getml/data/columns/from_value.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
|
random
random(seed: int = 5849) -> FloatColumnView
Create random column.
The numbers will be uniformly distributed from 0.0 to 1.0. This can be used to randomly split a population table into a training and a test set
PARAMETER | DESCRIPTION |
---|---|
seed |
Seed used for the random number generator.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
FloatColumnView
|
FloatColumn containing random numbers |
Example
population = getml.DataFrame('population')
population.add(numpy.zeros(100), 'column_01')
idx = random(seed=42)
population_train = population[idx > 0.7]
population_test = population[idx <= 0.7]
Source code in getml/data/columns/random.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
|